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Abstract
This paper concerns the topology of isospectral real manifolds of certain Jacobi
elements associated with real split semisimple Lie algebras. The manifolds
are related to the compactified level sets of the generalized (non-periodic) Toda
lattice equations defined on the semisimple Lie algebras. We then give a cellular
decomposition and the associated chain complex of the manifold by introducing
coloured Dynkin diagrams which parametrize the cells in the decomposition.
We also discuss the Morse chain complex of the manifold.

PACS number: 0220S

1. The generalized Toda lattice equations

Let g denote a real split semisimple Lie algebra of rank l. We fix a split Cartan subalgebra h
with root system �, real root vectors eαi

associated with simple roots {αi : i = 1, . . . , l} = �.
We also denote by {hαi

, e±αi
} the Cartan–Chevalley basis of g which satisfies the relations

[hαi
, hαj

] = 0 [hαi
, e±αj

] = ±Cj,ie±αj
[eαi

, e−αj
] = δi,j hαj

(1.1)

where the l × l matrix (Ci,j ) is the Cartan matrix corresponding to g, and Ci,j = αi(hαj
) =

〈αi, hαj
〉.

Then the generalized Toda lattice equation related to the real split semisimple Lie algebra
is defined by the following system of second-order differential equations for the real variables
{fj (t) : j = 1, . . . , l}:

d2fi

dt2
= εi exp (−〈αi, f 〉) (1.2)

where f = ∑l
j=1 fj (t)hαj

∈ h and εi ∈ {±1}.
0305-4470/01/112353+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2353
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Remark 1.1. The case with g = sl(l + 1,R) corresponds to the indefinite Toda lattice
introduced in [7]. The main feature of the indefinite Toda equation having at least one of
εi being −1 is that the solution blows up to infinity in finite time [7]. Having introduced the
signs, the group corresponding to the Toda lattice is a real split Lie group G̃ with Lie algebra
g. For example, in the case of g = sl(n,R), if n is odd, G̃ = SL(n,R), and if n is even,
G̃ = Ad(SL(n,R)±).

Remark 1.2. If we consider the complex Toda equation, εi in (1.2) can be absorbed in fi ∈ C,
so that the present study deals with the disconnected Cartan subgroup, where the generalized
Toda lattice defines a flow in each connected component.

Remark 1.3. The original Toda lattice in [12] is obtained as the case with all εi = 1 where
the position of the ith particle is given by qi = fi − fi+1 for i = 1, . . . , l,

d2qi

dt2
= exp(qi−1 − qi) − exp(qi − qi+1) (1.3)

where fl+1 = 0 and f0 = fl+2 = −∞ indicating q0 = −∞ and ql+1 = ∞.

1.1. Lax formulation: isospectral manifold Z(γ )R

The system (1.2) can be written in a Lax equation which describes an isospectral deformation
of a Jacobi element of g [4]. Define the set of real functions {(ai(t), bi(t)) : i = 1, . . . , l},

ai(t) = d

dt
fi(t) bi(t) = εi exp (−〈αi, f 〉). (1.4)

Then the Toda equation (1.2) can be written in the Lax form [4, 9],

dX

dt
= [P,X] (1.5)

where the Lax pair (X, P ) are defined by

X(t) =
l∑

i=1

ai(t)hαi
+

l∑
i=1

(
bi(t)e−αi

+ eαi

)

P(t) = −
l∑

i=1

bi(t)e−αi
.

(1.6)

The Lax form (1.5) represents an isospectral deformation of the Jacobi element X.
We denote the disconnected manifold given by the set of the elements in the form X of g,

ZR =
{
X = x +

l∑
i=1

(eαi
+ bie−αi

) ∈ g : x ∈ h, bi ∈ R
∗
}

=
⋃
ε∈E

Zε (1.7)

where R
∗ = R \ {0}, and the connected component Zε is given by

Zε = {X ∈ ZR : ε = (ε1, . . . , εl) ∈ E, sign(bi) = εi}. (1.8)

Here E is the set of all the signs ε, so the set ZR is the disjoint union of the 2l connected
components.

A real isospectral leaf in ZR is defined by the level sets of the Chevalley invariants, denoted
as (I1, . . . , Il), which are the polynomials of the variables (ai, bi). The invariants then define
a differentiable map,

I : ZR −→ R
l

X �−→ γ = (I1, . . . , Il). (1.9)
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Figure 1. The isospectral manifold Ẑ(γ )R for sl(3,R).

The real isospectral leaf Z(γ )R is then given by

Z(γ )R = I−1(γ )
⋂

ZR. (1.10)

Our main purpose in this paper is to give a detailed structure of the compactified manifold
Ẑ(γ )R from the viewpoint of the Lie group theory.

Remark 1.4. The Chevalley invariants provide l-involutive integrals for the generalized Toda
lattice equation, so that this proves the integrability of the equation in the Liouville–Arnold
sense.

Remark 1.5. The construction of the compactified manifold Ẑ(γ )R for the case of sl(l + 1,R)

was given in [8] based on the explicit solution structure in terms of the τ -functions, which
provide a local coordinate system for the manifold. By tracing the solution orbit of the
indefinite Toda equation, the disconnected components in Z(γ )R are all glued together to
make a smooth compact manifold. The result is possibly well explained by figure 1 for the
case of A2

∼= sl(3,R). In the figure, the Toda orbits are shown as the dotted curves, and each
region labelled by the same signs in (ε1, ε2) with εi ∈ {±} are glued together through the
boundary (the wavy curves) of the hexagon. At a point of the boundary the Toda orbit blows
up in finite time, but the orbit can be uniquely traced to the one in the next region (marked
by the same letter A,B or C). Also the flows on the full lines show the solutions of the
subsystems (i.e. either b1 = 0 or b2 = 0). Then the compactified manifold Ẑ(γ )R by adding
the blow-up points (the wavy lines) and the flows of the subsystems (the solid lines) to Z(γ )R

in this case is shown to be isomorphic to the connected sum of two Klein bottles, that is, the
integral homology Hk(Ẑ(γ )R,Z) is given by H0 = Z, H1 = Z

3 ⊕ Z2, and H2 = 0. In the
case of sl(n,R) for n � 3, Ẑ(γ )R is shown to be non-orientable and the symmetry group is
the semi-direct product of (Z2)

n−1 and the Weyl group W = Sn, the permutation group. One
should compare this with the result of Tomei [13] where the compact manifolds are associated
with the definite (original) Toda lattice equation and the compactification is done by adding
only the subsystems. (Also see [3] for some topological aspects of the manifolds which are
identified as permutohedrons.)
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1.2. Leznov–Saveliev formulation: Cartan subgroup HR

In the zero-curvature formulation in [10], the generalized Toda lattice equation (1.2) with the
sign ε = (ε1, . . . , εl) can be expressed as an orbit on the connected component Hε of the
Cartan subgroup HR,

HR =
⋃
ε∈E

Hε (1.11)

where H(1,...,1) := H = exp h, the connected component with the identity. Thus the set HR

consists of 2l connected components. Let gε be an element of Hε given by

gε = hε exp f (1.12)

which can also be considered as a map from ZR to HR. Here the element hε ∈ Hε satisfies
χαi

(hε) = εi with the group character χφ determined by a root φ ∈ �, and each connected
component of HR can be written as Hε = hεH . Then the Toda lattice (1.2) is written as an
evolution of gε(t),

d

dt
g−1
ε

d

dt
gε = [

g−1
ε e+gε, e−

]
(1.13)

where e± are fixed elements in the simple root spaces g±� so that all the elements in g±� can
be generated by e±, i.e. g±� = {Adh(e±) : h ∈ H }. In particular, we take

e± =
n∑

i=1

e±αi
. (1.14)

With the group character χαi
, the solution bi(t) of the Toda lattice is given by

bi(t) = [
χαi

(gε)
]−1 = χ−αi

(gε). (1.15)

Remark 1.6. With the fundamental weights ωi defined as 〈ωi, hαj
〉 = δij , i.e. αi =∑l

j=1 Ci,jωj , we can write the solution

bi =
l∏

j=1

[
χωj

(gε)
]−Ci,j (1.16)

which is the well known τ -function representation of the solution with τi(t) := χωi
(gε).

Remark 1.7. In the compactification of the disconnected Cartan subgroup HR, we need to
add pieces corresponding to the blow-ups (|bi | = ∞) and the subsystems (bi = 0). The
subsystems are determined by the subset A = {αi ∈ � : bi = 0}, and the corresponding
Cartan subgroup, denoted by HA

R
, may be defined as

HA
R

=
⋃
ε∈EA

hεH
A (1.17)

where the set EA ⊂ E and the Cartan subgroup HA are defined by

EA = {(ε1, . . . , εl) ∈ E : εi = 1 if αi ∈ A} (1.18)

HA = exp hA with hA = Span
R
{hαi

∈ h : αi /∈ A}. (1.19)

Then the subsystems are also expressed as the same form of (1.13) with gA
ε ∈ HA

ε ,

gA
ε = hε exp

(∑
αi /∈A

fi(t)hαi

)
. (1.20)
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The corresponding Lax pair (XA,PA) is given by

XA =
∑
αi∈�

aihαi
+
∑
αi /∈A

bie−αi
+ e+

PA = −
∑
αi /∈A

bie−αi

(1.21)

which is just the Lax pair (1.6) with bi = 0 for αi ∈ A. Note here that ai(t) = constant if
bi = 0. We also consider that the dimension of the manifold HA

R
is l − |A|, the number of

parameters fi .

Remark 1.8. The compactification of the isospectral manifold Z(γ )R for a fixed γ ∈ R
l can

be obtained by sending it to the flag manifold G̃/B+ with the Borel subgroup B+ of G̃ [9], so
that the compactified manifold Ẑ(γ )R is a toric variety HRxB+ with a generic element x ∈ G̃.

Then we can show:

Theorem 1.1. The isospectral manifold Ẑ(γ )R is a smooth compact manifold diffeomorphic
to ĤR.

The complex version of this theorem is given in [5], and the proof of the present case is
essentially given in the same manner (the detail of the proof is given in [2]).

In the following two sections, we will describe the structure of ĤR using the Weyl action
on the manifold. This is a brief summary of a preprint [2], and the proofs of the results
(proposition 2.1, theorems 3.1 and 3.2) can be found therein. Then in section 4, we will
present the Morse theory to compute the integral homology of the manifold ĤR.

2. The structure of ĤR as the union of the subsystems

As was shown in the previous section, the set HR can be parametrized by the group characters
χαi

, that is, HR = ∪ε∈EHε with Hε = hεH ,

Hε = {
h ∈ HR : sign(χαi

(h)) = χαi
(hε) = εi for i = 1, . . . , l

}
. (2.1)

Note that each Hε is diffeomorphic to R
l .

Since the Weyl group acts on HR, one can partition HR into the |W | convex cones of the
Weyl chambers. We denote the cone in the antidominant chamber as

H−
R

=
⋃
ε∈E

H−
ε (2.2)

where the connected component H−
ε is defined by

H−
ε = {

h ∈ HR : |χ−αi
(h)| � 1, sign(χαi

(h)) = εi
}
. (2.3)

The boundaries of the chamber H−
ε corresponding to χαi

(h) = 1 and χαi
(h) = −1 are called

the positive and negative αi-walls, and, in particular, the positive αi-wall gives the hyperplane
of the Weyl reflection with respect to the root αi . Then the connected component Hε of HR is
expressed as the union of W -translations of H−

ε , i.e.

Hε =
⋃
w∈W

w
(
H−

ε(w)

)
. (2.4)

Here the W -action on H−
ε is obtained through the action on the group characters,

sαi
(χαj

) = χsαi αj
= χαj

χ
−Cj,i

αi
(2.5)
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from which we also have the W -action on the set E as sαi
: εj �→ ε′

j with εj = χαj
(hε),

ε′
j = εj ε

−Cj,i

i (2.6)

where we have used the Weyl reflection, sαi
αj = αj − Cj,iαi . Thus the element hε is W -

translated to hε′ with the sign ε′ = (ε′
1, . . . , ε

′
l ) given by (2.6), which we denote by ε′ = ε(w)

with w = sαi
Weyl reflection. Thus, with the decomposition (2.4), we can consider only the

antidominant chamber H−
ε , and obtain the whole HR by the W -translates. This is also true for

the compactified manifold ĤR.
Let us first make the closure of H−

ε by adding the pieces corresponding to the subsystems
having the lower dimensions l−|A| where A ⊂ � determines the subsystem (see remark 1.7).
We let

HA,−
ε = {

h ∈ HA
ε : |χ−αi

(h)| � 1, ε = (εi1 , . . . , εim) for αij /∈ A
}
. (2.7)

Then the closure of the set H−
ε can be obtained by

H−
ε =

⋃
A⊂�

HA,−
ε (2.8)

and the compactified manifold ĤR is given by the W -translates of (2.8), i.e.

ĤR =
⋃
ε∈E

⋃
w∈W

w
(
H−

ε(w)

)
. (2.9)

We summarize the result as:

Proposition 2.1. The closed setH−
ε is isomorphic to the box {(t1, . . . , tl) ∈ R

l : −1 � tj � 1},
and the manifold ĤR is compact and has an action of the Weyl group W .

3. Topology of ĤR

3.1. Coloured Dynkin diagrams

Here we give a cellular decomposition and construct the associated chain complex of the
compactified manifold ĤR. We first introduce the set of coloured Dynkin diagrams to
parametrize the cells in the decomposition. A coloured Dynkin diagram is simply a Dynkin
diagram in which some of the vertices have been coloured either red (R) or blue (B). For
example, in the case of A2

∼= sl(3,R), we have ◦R − ◦, ◦B − ◦R , etc. Thus a coloured Dynkin
diagram D corresponds to a pair (S, η) with S ⊂ � and η : S → {±1}, where η(αi) = −1
if αi is coloured R, and η(αi) = 1 if αi is coloured B. We denote the set of coloured Dynkin
diagrams as

D(S) = {D = (S, η) : S ⊂ �, η(α) ∈ {±1} for α ∈ S}. (3.1)

Let WS be the group generated by the simple reflections corresponding to the roots in S.
We then define the WS-action on the set D(S) as follows: for any αi ∈ S, sαi

D = D′ is a new

coloured Dynkin diagram having the colours corresponding to the sign change ε′
j = εj ε

−Cj,i

i

in (2.6) with the identification that R if the sign is −1, and B if it is +1. For example, in the
case of A2, we have sα1(◦R − ◦B) = ◦R − ◦R, sα1(◦B − ◦R) = ◦B − ◦R .

The WS-action induces the W -translates on the set D(S) as W ×WS
D(S). The elements

of this set are given by pairs (w,D), and among the elements we have an equivalence relation
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∼ , that is, (wx,D) ∼ (w, xD) for any x ∈ WS . The equivalent relation gives a bijective
correspondence between W ×WS

D(S) and D(S) × W/WS . We then define the set D
k as

D
k := {(D, [w]�−S) : D ∈ D(S), [w]�−S ∈ W/WS, |S| = k} (3.2)

which parametrizes all the connected components of the Cartan subgroups of the form H�−S
R

corresponding to the subsystems defined in remark 1.7. In this parametrization, Dk corresponds
explicitly to the dual of the set H�−S

R
, so that the parametrized cell has the codimension k, and

dim H�−S
R

= k. Thus all the cells in ĤR can be parametrized by the sets D
k , and we have:

Theorem 3.1. The collection of the sets D
k defined (3.2) gives a cell decomposition of the

compact manifold ĤR.

Remark 3.1. There is a more convenient cell decomposition of ĤR for the purpose of
calculating homology explicitly. The only change is that the l-dimensional cell becomes
the union of all the l-cells together with all the (internal) boundaries corresponding to coloured
Dynkin diagrams where all the coloured vertices are coloured B. This is the set,

ĤR \
⋃

S⊂�,w∈W
η(αi )=−1 for some αi∈S

(S, η, [w]�−S).

This set can be seen to be homeomorphic to R
l . With this cell decomposition there is exactly

one l-cell, and the other lower-dimensional cells correspond to coloured Dynkin diagrams D,
in which at least one vertex of D has been coloured R.

Example 3.1. In the case of A2, we have:

(a) For k = 2, i.e. S = �, we have four vertices (0-cell) parametrized by the elements of D
2,

which correspond to the four connected components of HR as dual cells,

(◦B − ◦B, [e]) (◦B − ◦R, [e]) (◦R − ◦B, [e]) (◦R − ◦R, [e])

where [e] = [e]∅ = [w]∅ for any w ∈ W .
(b) For k = 1, if S = {α1}, we have six 1-cells parametrized by

(◦B − ◦, [w]{α2}) (◦R − ◦, [w]{α2})

where W/WS = {e, sα2 , sα1sα2}, and if S = {α2}, we have also six 1-cells,

(◦ − ◦B, [w]{α1}) (◦ − ◦R, [w]{α1})

where W/WS = {e, sα1 , sα2sα1}. Those coloured Dynkin diagrams with w = e correspond
to the four walls (2-positive and 2-negative walls) of the antidominant chamber H−

R
, which

is isomorphic to a square.
(c) For k = 0, i.e. S = ∅, we have six 2-cells of the convex cones corresponding to the Weyl

chambers parametrized by

(◦ − ◦, w)

for w ∈ W . Those are dual to the 6-vertices corresponding to H�
R

. As mentioned in
remark 3.1, we have a simpler cell decomposition. Namely, the union of all coloured
Dynkin diagrams having no R-coloured vertices forms the unique 2-cell which is the set
of internal points of the hexagon homeomorphic to R

l , and all other cells consist of the
boundary of the hexagon.

Figure 2 illustrates the example. One should note that full parametrization of the cells
is obtained by the W -translates of (D, [e]�−S) corresponding to the subsystems in the
antidominant chamber H

�−S,−
R

for all the choices of S ⊂ �.
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Figure 2. The manifold ĤR parametrized by coloured Dynkin diagrams for sl(3,R).

3.2. Boundary maps and chain complex

With these parametrizations of the cells, we now define the boundary maps on the coloured
Dynkin diagrams. Let (j, c) be a pair of integers with j = 1, . . . , m and c = 1, 2. Then
we define the (j, c)-boundary, denoted as ∂j,cD, of a coloured Dynkin diagram D with the
set of uncoloured vertices {αij : 1 � i1. . . . , im � l} as a new coloured Dynkin diagram
by colouring the ij th vertex with R if c = 1 and with B if c = 2. Recall that a coloured
Dynkin diagram D corresponds to a pair (S, η) with S ⊂ � and η : S → {±1}. Thus the
boundary operator ∂j,c determines a new pair (S ∪ {αij }, η′) where η′ is an extension of the η

on S ∪ {αij } with η′(αij ) = (−1)c. Giving an orientation on the boundary, we define the map
∂̃j,c := (−1)j+c+1∂j,c which gives a map on the Z-modules,

∂̃j,c : Z[D(S)] −→ Z[D(S ∪ {αij })]. (3.3)

Let us now consider the Z-modules of the full set of coloured Dynkin diagrams,
D

k = D(S) × W/WS ||S|=k . We denote the module as

M(S) = D[W ] ⊗Z[WS ] Z[D(S)] (3.4)

so that the k-chain is given by the direct sum of all these modules over all sets with |S| = l−k,

Mk =
⊕

|S|=l−k

M(S). (3.5)



Topology of Toda lattices 2361

The boundary map ∂k : Mk → Mk−1 can be defined by

∂k (D, [w]�−S) =
∑

1�j�k
c=1,2

(
∂̃j,cD, [w]�−{S∪{αij

}}
)

(3.6)

where �− S = {αij : 1 � j � k}. The condition for the boundary map, ∂k ◦ ∂k+1 = 0, is then
easily verified, and we have:

Theorem 3.2. The map ∂k of (3.6) defines a chain complex M∗,

0 −→ Ml

∂l−→ Ml−1
∂l−1−→ · · · ∂2−→ M1

∂1−→ M0 −→ 0 (3.7)

where Mk is defined by (3.5).

Since we have an explicit representation of the k-chains as (3.5) with (3.4), the integral
homology Hk(ĤR; Z) = Ker ∂k/ Im ∂k+1 can also be computed. However, an explicit formula
may be too complicated.

4. Morse theory and homology

4.1. Morse theory

The generalized Toda equation can be expressed as a gradient flow on the adjoint orbit of g [1].
Here we consider a Morse decomposition of the manifold ĤR based on the gradient structure
of the Toda flow. Each critical point of the Toda vector field can be parametrized by a unique
element of the Weyl group W . Then we define the unstable and stable Weyl subgroups for
a ∈ W as

Wu(a) = W�u
a

�u
a := {αi ∈ � : 4(asαi

) > 4(a)}
Ws(a) = W�s

a
�s

a := {αi ∈ � : 4(asαi
) < 4(a)}

(4.1)

where 4(a) denotes the length of a. We will use the same notation for the unstable and stable
manifolds generated by the Toda vector field corresponding to the critical point a. Thus,
depending on the context, Wu(a), Ws(a) denotes either a subgroup of W or a submanifold
of ĤR. We also introduce labels in the Dynkin diagram to characterize the critical point by
assigning ‘0’ in the ith place in the diagram if sαi

∈ Ws(a), and ‘∗’ if sαi
∈ Wu(a). For

example, in the case of g = sl(6 : R), the element [2143] ∈ W is labelled as (0 ∗ 0 ∗ ∗), where
[2143] := sα2sα1sα4sα3 . The Wu([2143]) is then the subgroup generated by {sα2 , sα4 , sα5} and
is diffeomorphic to R

3. In terms of handle body, the critical point [2143] is identified as the
product D2 × D3 where Dn is the n-dimensional disc.

With this identification, we have the Morse decomposition of the manifold ĤR,

ĤR =
⋃
a∈W

Wu(a). (4.2)

The index of the critical point a ∈ W is defined as

Ind(a) := dim Wu(a) = ∣∣�u
a

∣∣ (4.3)

which is also given by the number of ∗s in the labelled Dynkin diagram, e.g. for sl(6 : R),
Ind([2143]) = 3.

The Toda flow defines a (directed) graph which provides one-dimensional connections
among the critical points corresponding to the one-dimensional flow of a sl(2,R) subsystem.
We call the graph the Toda graph and it is defined by
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Definition 4.1 (Toda graph). A directed graph is called a Toda graph if each vertex defined
by 〈a〉 = a−1〈e〉 with a ∈ W has the connections to another vertex 〈bi〉 by

bi = asαi
for i = 1, . . . , l.

The direction in the connection between two vertices a and b is defined by

a → b if 4(a) < 4(b).

In order to construct a Morse complex, a vector field on the manifold must satisfy the
Morse–Smale condition, that is, the intersection between (the manifolds) Wu(a) and Ws(b)

for the critical points a and b must be transversal. However, the corresponding intersections
in the case of the Toda lattice are, in general, not transversal. We have:

Definition 4.2 (Transversal connection (algebraic version)). A connection a → b is
transversal if

(a)
∣∣�u

a ∩ �s
b

∣∣ = Ind(a) − Ind(b),
(b) 〈Wu(a),Ws(b)〉 = W ,
(c)

∣∣aWu(a) ∩ bWs(b)
∣∣ = ∣∣W�u

a∩�s
b

∣∣.
This definition is motivated by:

Theorem 4.1. For the Toda lattice vector field, each closure, Wu(a) (Ws(a)) a ∈ W of the
unstable (stable, respectively) manifold is smooth. Moreover, each smooth manifold Wu(a)

(Ws(a)) is orientable and produces a cycle if and only if the subgroup Wu(a) (Ws(a)) is
Abelian. A connection a → b is transversal (definition (4.2)) if and only if Wu(a), Ws(b)

intersect transversally. The intersection is diffeomorphic to a circle.

The proof of the theorem can be obtained from the methods developed in [2], and the detail
will be given elsewhere.

We call a graph with vertices given by W and oriented edges a → b satisfying the
(algebraic) transversality conditions above with Ind(a) = Ind(b) + 1, a Morse–Smale graph,
if in addition, (a) there is a perturbation of the Toda lattice which is Morse–Smale and has the
same set of critical points (W ), (b) a → b only if the manifolds Wu(a) and Ws(b) for this new
vector field intersect transversally. A Morse–Smale vector field can be obtained by a small
smooth perturbation of the Toda lattice as in [11]. We have confirmed that conditions (a)–(c) in
definition 4.2 are sufficient to determine uniquely a Morse–Smale graph in the cases of g ∼= Al

up to l = 3. However, this may not be true, in general.
We now define a boundary map on the chain C∗ of the cells of unstable Weyl groups

Wu(a), i.e.

C∗ =
l⊕

k=0

Ck Ck =
∑

Ind(a)=k

Z〈a〉 (4.4)

where 〈a〉 is the cell corresponding to Wu(a). The chain Ck is the set of all cells 〈a〉 with the
labelled Dynkin diagram having k number of ∗s. The boundary map ∂k : Ck → Ck−1 is then
defined by

∂k : 〈a〉 �−→ ∂k〈a〉 =
∑

Ind(b)=k−1

[a; b] 〈b〉 (4.5)

where all the connections a → b are edges in the Morse–Smale graph, and the incidence
number [a; b] is given by

[a; b] = (
1 + (−1)σ [a;b]

)
(−1)4(a

−1b)+i (4.6)
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with

σ [a; b] = ∣∣{j : εj → ε′
j < 0, αj ∈ �u

a}
∣∣

where the index i is given by {sαi
} = �u

a ∩ �s
b, i.e. the Dynkin diagram corresponding to 〈b〉

has 0 in the ith place in addition to the 0s in 〈a〉. The sign change εi → ε′
i under the connection

a → b is defined as follows:

a−1b · (ε1, . . . , εl) = (ε′
1, . . . , ε

′
l ) (4.7)

where the initial signs εis are taken as

εj =
{

+ if αj ∈ �s
a ∪ �u

b

− if αj ∈ �u
a ∩ �s

b

and ε′
j is defined as (2.6). With this definition, we can determine the change of orientations

of the hypersurfaces for bi > 0 and bi < 0 parallel to the surface given by bi = 0 under the
action of x = a−1b.

4.2. Example of Al = sl(l + 1; R)

Let us first introduce the following elements of W = Sl+1, the symmetry group of the order of
l + 1:

sij := sαi
· · · sαj

= [i · · · j ] (4.8)

where the numbers i · · · j denote the consecutive numbers between i and j for 1 � i, j � l.
Then, for example, some (but not all) of the connections from the top cell 〈e〉 = (∗ · · · ∗) to
the cells labelled (∗ · · · ∗ 0 ∗ · · · ∗) with 0 in the j th place are expressed by sij : 〈e〉 → 〈sij 〉
with

〈sij 〉 := s−1
ij · 〈e〉 = sji · 〈e〉 for 1 � i, j � l. (4.9)

Note that the cell 〈sij 〉 is isomorphic to Aj−1 × Al−j as an unstable manifold Wu(sij ) with
index l − 1 generated by the Toda flows. In particular, all the cells of Al−1-type are given
by 〈si1〉 and 〈sil〉 for i = 1, . . . , l. We call the k-cells of Ak-type the principal part (of the
k-cells), and those of the Aj1 × · · · × Ajn with j1 + · · · + jn = k, n > 1 the whisker part.
The set of all the (principal) k-cells of Ak-type is denoted as Ak . For example, the boundary
of a principal k-cell labelled by (0 · · · 0 ∗ · · · ∗ 0 · · · 0) with l − k zeros is written in the sum

of the principal and the whisker parts of (k − 1)-cells. We then define a boundary map
◦
∂

on the principal k-cells into the projection of the boundary map ∂ on the principal parts of
(k − 1)-cells:

◦
∂k : Ak −→ Ak−1. (4.10)

For the boundary of the top cell, we have

◦
∂l〈e〉 =

l∑
i=1

(
[e; si1]〈si1〉 + [e; sil]〈sil〉

)
(4.11)

where the incidence numbers are computed as

[e; si1] = [e; sl−i+1,l] = 2(−1)i+1(1 − δil).

Thus the principal part of the boundary of the top cell consists of 2(l − 1) cells of Al−1-type,
and the cells 〈s1l〉 and 〈sl1〉 are not in the part of the boundary. We also note that 〈s1l〉 and
〈sl1〉 are only cells of Al−1 type separated from the others and invariant under the subgroup
generated by Wu(s1l) for 〈s1l〉 and Wu(sl1) for 〈sl1〉. Then one can identify the cells which are
not included in any parts of the boundaries of Ak type as in the following proposition:
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Proposition 4.1. All the cells which are free from the boundaries of cells with higher indices
are generated by the following commutative diagram starting from 〈a0,0〉 := 〈e〉:

〈ai,j 〉
sl−j,i+1−−−−→ 〈ai,j+1〉

si+1,l−j

� �si+1,l−j−1

〈ai+1,j 〉
sl−j,i+2−−−−→ 〈ai+1,j+1〉

(4.12)

where 〈ai,j 〉 represents a unique cell labelled with (

i︷ ︸︸ ︷
0 · · · 0 ∗ · · · ∗

j︷ ︸︸ ︷
0 · · · 0) ∈ Al−(i+j).

Proof. The braid relation [i · i +1 · i] = [i +1 · i · i +1] shows the commutativity of the diagram.
One can also show in a similar way as in (4.11) that the principal part of the boundary of the
〈ai,j 〉 consists of 2(l − (i + j) − 1) cells and is given by

◦
∂l−(i+j)〈ai,j 〉 = 2

l−(i+j)∑
k=1

(−1)k+1
(
1 − δk,l−(i+j)

) (〈bi+1,i+k〉 + 〈bl−j,l−j−k+1〉
)

(4.13)

where 〈bi ′,j ′ 〉 = si ′,j ′ · 〈ai,j 〉, and the cells 〈bi+1,l−j 〉 = 〈ai+1,j 〉 and 〈bl−j,i+1〉 = 〈ai,j+1〉 do not
appear. �

The cells defined in proposition 4.1 give the seed elements of the ‘principal graph’
defined as the graph on the sets A∗ := ⊕l

k=1 Ak where the connections indicate the non-
zero incidence numbers. Thus in the principal graph there are l(l+1)

2 disconnected subgraphs,
each of which has a cell 〈ai,j 〉 as the highest-dimensional cell (the seed cell) in the subgraph

with dim〈ai,j 〉 = l − (i + j). Then one can show that the pair (A∗,
◦
∂∗) forms a subchain

complex, that is, the boundary map satisfies
◦
∂k ◦ ◦

∂k+1 = 0.

Figure 3. The principal graph for A3 = sl(4,R).

Figure 3 illustrates the example of A3 = sl(4; R). As in figure 3, one can identify the cells
in Ak as (k−1)-dimensional cells in the graph consisting of l(l +1)/2 number of disconnected
hypercubes. In each hypercube of dimension k − 1, the top cell is represented by 〈ai,j 〉 with
k = l − (i + j), and the vertices represent A1-cycles. For the case of A3, we identify the seed
cell 〈e〉 as the face (square), the cells in A2 as the edges and those in A1 as the vertices. Then
counting the numbers of those cells, we obtain

Theorem 4.2. The generating function (Poincaré polynomial) P(A∗; q) of the number of cells
|Ak| is given by

P(A∗; q) =
l∑

k=1

|Ak|qk−1 =
l∑

n=1

n(q + 2)l−n. (4.14)
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Proof. It is easy to see that the number of k-dimensional cellsak in then-dimensional hypercube
is given by

(
n

k

)
2n−k so that we have

n∑
k=0

|ak|qk = (q + 2)n.

From proposition 4.1, we have a number n of (l − n)-dimensional hypercubes in the principal
graph. This asserts the theorem. �

As a corollary of theorem 4.2, we obtain

Corollary 4.1. The Betti number of H1(ĤR,Z) is given by

b1(ĤR) := rank(H1) = P(A∗; −1) = l(l + 1)

2
. (4.15)

Proof. The total number of A1-cycles is given by the number of vertices in the graph, i.e.

|Z1| =
l−1∑
n=0

2n(l − n) = 2l+1 − (l + 2).

From the graph, we can also find the number of boundaries, that is, in each graph of n-
dimensional hypercubes there are 2n − 1 boundaries, and we have l − n disconnected graphs
in this dimension. Then we have

|B1| =
l−1∑
n=1

(l − n) × (2n − 1)

and obtain the Betti number b1 = |Z1| − |B1| as stated. �

Although we have a complete characterization of the cells in terms of coloured Dynkin
diagrams (section 3), we have not obtained explicitly a higher homology. It is, however, natural
to consider the following conjecture on the Betti numbers bk as the alternative sums of the
numbers of whiskers:

bk =




l−k+1∑
n=k

∣∣A(k)
n

∣∣(−1)n−k for 1 � k � l + 1

2

0 for k >
l + 1

2

(4.16)

where |A(k)
n | is the number of whiskers defined by

∣∣A(k)
n

∣∣ :=
∑

n1+···+nk=n
1�n1�···�nk

∣∣An1 × · · · × Ank

∣∣.

Note here that all the k-cycles are given by the products of A1-cycles, i.e. |Zk| = |A(k)
k |. The

conjecture is confirmed for the cases of g ∼= Al up to l = 3.
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5. Final remark

In this paper, we have studied the topology of the isospectral manifolds associated with
the compactified level variety of the generalized Toda (Kostant–Toda) lattices on real split
semisimple Lie algebras. The details of the decomposition based on the coloured Dynkin
diagrams can be found in our recent paper [2], and the proofs of the results stated in sections 2
and 3 can also be found therein.

As a final remark, we would like to mention a possible extension of the present study for
the full Kostant–Toda lattices which are recently shown to be integrable in [6]. Our methods
may then shed some light on the structure of the real full flag manifold.
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